troll-patrol/src/analysis.rs

436 lines
15 KiB
Rust

use crate::{BridgeInfo, BridgeInfoType};
use lox_library::proto::{level_up::LEVEL_INTERVAL, trust_promotion::UNTRUSTED_INTERVAL};
use nalgebra::DVector;
use statrs::distribution::{Continuous, MultivariateNormal, Normal};
use std::{
cmp::min,
collections::{BTreeMap, HashSet},
};
/// Provides a function for predicting which countries block this bridge
pub trait Analyzer {
/// Evaluate open-entry bridge. Returns true if blocked, false otherwise.
fn stage_one(
&self,
confidence: f64,
bridge_ips: &[u32],
bridge_ips_today: u32,
negative_reports: &[u32],
negative_reports_today: u32,
) -> bool;
/// Evaluate invite-only bridge without positive reports. Return true if
/// blocked, false otherwise.
fn stage_two(
&self,
confidence: f64,
bridge_ips: &[u32],
bridge_ips_today: u32,
negative_reports: &[u32],
negative_reports_today: u32,
) -> bool;
/// Evaluate invite-only bridge with positive reports. Return true if
/// blocked, false otherwise.
fn stage_three(
&self,
confidence: f64,
bridge_ips: &[u32],
bridge_ips_today: u32,
negative_reports: &[u32],
negative_reports_today: u32,
positive_reports: &[u32],
positive_reports_today: u32,
) -> bool;
}
/// Accepts an analyzer, information about a bridge, and a confidence value.
/// Returns a set of country codes where the bridge is believed to be blocked.
pub fn blocked_in(
analyzer: &dyn Analyzer,
bridge_info: &BridgeInfo,
confidence: f64,
date: u32,
) -> HashSet<String> {
// TODO: Re-evaluate past days if we have backdated reports
let mut blocked_in = HashSet::<String>::new();
let today = date;
let age = today - bridge_info.first_seen;
for (country, info) in &bridge_info.info_by_country {
if info.blocked {
// Assume bridges never become unblocked
blocked_in.insert(country.to_string());
} else {
// Get today's values
let new_map_binding = BTreeMap::<BridgeInfoType, u32>::new();
// TODO: Evaluate on yesterday if we don't have data for today?
let today_info = match info.info_by_day.get(&today) {
Some(v) => v,
None => &new_map_binding,
};
let bridge_ips_today = match today_info.get(&BridgeInfoType::BridgeIps) {
Some(&v) => v,
None => 0,
};
let negative_reports_today = match today_info.get(&BridgeInfoType::NegativeReports) {
Some(&v) => v,
None => 0,
};
let positive_reports_today = match today_info.get(&BridgeInfoType::PositiveReports) {
Some(&v) => v,
None => 0,
};
let num_days = min(age, UNTRUSTED_INTERVAL);
// Get time series for last num_days
let mut bridge_ips = vec![0; num_days as usize];
let mut negative_reports = vec![0; num_days as usize];
let mut positive_reports = vec![0; num_days as usize];
for i in 0..num_days {
let date = today - num_days + i - 1;
let new_map_binding = BTreeMap::<BridgeInfoType, u32>::new();
let day_info = match info.info_by_day.get(&date) {
Some(v) => v,
None => &new_map_binding,
};
bridge_ips[i as usize] = match day_info.get(&BridgeInfoType::BridgeIps) {
Some(&v) => v,
None => 0,
};
negative_reports[i as usize] = match day_info.get(&BridgeInfoType::NegativeReports)
{
Some(&v) => v,
None => 0,
};
positive_reports[i as usize] = match day_info.get(&BridgeInfoType::PositiveReports)
{
Some(&v) => v,
None => 0,
};
}
// Evaluate using appropriate stage based on age of the bridge
if age < UNTRUSTED_INTERVAL {
// open-entry bridge
if analyzer.stage_one(
confidence,
&bridge_ips,
bridge_ips_today,
&negative_reports,
negative_reports_today,
) {
blocked_in.insert(country.to_string());
}
} else if age
< UNTRUSTED_INTERVAL + LEVEL_INTERVAL[1] + LEVEL_INTERVAL[2] + UNTRUSTED_INTERVAL
{
// invite-only bridge without 30+ days of historical data on
// positive reports
if analyzer.stage_two(
confidence,
&bridge_ips,
bridge_ips_today,
&negative_reports,
negative_reports_today,
) {
blocked_in.insert(country.to_string());
}
} else {
// invite-only bridge that has been up long enough that it
// might have 30+ days of historical data on positive reports
if analyzer.stage_three(
confidence,
&bridge_ips,
bridge_ips_today,
&negative_reports,
negative_reports_today,
&positive_reports,
positive_reports_today,
) {
blocked_in.insert(country.to_string());
}
}
}
}
blocked_in
}
// Analyzer implementations
/// Dummy example that never thinks bridges are blocked
pub struct ExampleAnalyzer {}
impl Analyzer for ExampleAnalyzer {
fn stage_one(
&self,
_confidence: f64,
_bridge_ips: &[u32],
_bridge_ips_today: u32,
_negative_reports: &[u32],
_negative_reports_today: u32,
) -> bool {
false
}
fn stage_two(
&self,
_confidence: f64,
_bridge_ips: &[u32],
_bridge_ips_today: u32,
_negative_reports: &[u32],
_negative_reports_today: u32,
) -> bool {
false
}
fn stage_three(
&self,
_confidence: f64,
_bridge_ips: &[u32],
_bridge_ips_today: u32,
_negative_reports: &[u32],
_negative_reports_today: u32,
_positive_reports: &[u32],
_positive_reports_today: u32,
) -> bool {
false
}
}
/// Model data as multivariate normal distribution
pub struct NormalAnalyzer {
max_threshold: u32,
scaling_factor: f64,
}
impl NormalAnalyzer {
pub fn new(max_threshold: u32, scaling_factor: f64) -> Self {
Self {
max_threshold,
scaling_factor,
}
}
// Returns the mean vector, vector of individual standard deviations, and
// covariance matrix
fn stats(data: &[&[u32]]) -> (Vec<f64>, Vec<f64>, Vec<f64>) {
let n = data.len();
// Compute mean and standard deviation vectors
let (mean_vec, sd_vec) = {
let mut mean_vec = Vec::<f64>::new();
let mut sd_vec = Vec::<f64>::new();
for var in data {
// Compute mean
let mut sum = 0.0;
for count in *var {
sum += *count as f64;
}
let mean = sum / var.len() as f64;
// Compute standard deviation
let mut sum = 0.0;
for count in *var {
sum += (*count as f64 - mean).powi(2);
}
let sd = (sum / var.len() as f64).sqrt();
mean_vec.push(mean);
sd_vec.push(sd);
}
(mean_vec, sd_vec)
};
// Compute covariance matrix
let cov_mat = {
let mut cov_mat = Vec::<f64>::new();
// We don't need to recompute Syx, but we currently do
for i in 0..n {
for j in 0..n {
cov_mat.push({
let var1 = data[i];
let var1_mean = mean_vec[i];
let var2 = data[j];
let var2_mean = mean_vec[j];
assert_eq!(var1.len(), var2.len());
let mut sum = 0.0;
for index in 0..var1.len() {
sum +=
(var1[index] as f64 - var1_mean) * (var2[index] as f64 - var2_mean);
}
sum / (var1.len() - 1) as f64
});
}
}
cov_mat
};
(mean_vec, sd_vec, cov_mat)
}
}
impl Analyzer for NormalAnalyzer {
/// Evaluate open-entry bridge based on only today's data
fn stage_one(
&self,
_confidence: f64,
_bridge_ips: &[u32],
bridge_ips_today: u32,
_negative_reports: &[u32],
negative_reports_today: u32,
) -> bool {
negative_reports_today > self.max_threshold
|| f64::from(negative_reports_today) > self.scaling_factor * f64::from(bridge_ips_today)
}
/// Evaluate invite-only bridge based on last 30 days
fn stage_two(
&self,
confidence: f64,
bridge_ips: &[u32],
bridge_ips_today: u32,
negative_reports: &[u32],
negative_reports_today: u32,
) -> bool {
assert!(bridge_ips.len() >= UNTRUSTED_INTERVAL as usize);
assert_eq!(bridge_ips.len(), negative_reports.len());
let alpha = 1.0 - confidence;
let (mean_vec, sd_vec, cov_mat) = Self::stats(&[bridge_ips, negative_reports]);
let negative_reports_mean = mean_vec[1];
let bridge_ips_sd = sd_vec[0];
let negative_reports_sd = sd_vec[1];
// Artificially create data for alternative hypothesis
let num_days = bridge_ips.len() as usize;
let mut bridge_ips_blocked = vec![0; num_days];
let mut negative_reports_blocked = vec![0; num_days];
let bridge_ips_deviation = (2.0 * bridge_ips_sd).round() as u32;
for i in 0..num_days {
// Suppose bridge stats will go down by 2 SDs
bridge_ips_blocked[i] = if bridge_ips_deviation > bridge_ips[i] {
0
} else {
bridge_ips[i] - bridge_ips_deviation
};
// Suppose negative reports will go up by 2 SDs
negative_reports_blocked[i] =
negative_reports[i] + (2.0 * negative_reports_sd).round() as u32;
}
let (mean_vec_blocked, _sd_vec_blocked, cov_mat_blocked) =
Self::stats(&[&bridge_ips_blocked, &negative_reports_blocked]);
let mvn = MultivariateNormal::new(mean_vec, cov_mat).unwrap();
let pdf = mvn.pdf(&DVector::from_vec(vec![
bridge_ips_today as f64,
negative_reports_today as f64,
]));
let mvn_blocked = MultivariateNormal::new(mean_vec_blocked, cov_mat_blocked).unwrap();
let pdf_blocked = mvn_blocked.pdf(&DVector::from_vec(vec![
bridge_ips_today as f64,
negative_reports_today as f64,
]));
// Also model negative reports in isolation
let nr_normal = Normal::new(negative_reports_mean, negative_reports_sd).unwrap();
let nr_pdf = nr_normal.pdf(negative_reports_today as f64);
let nr_normal_blocked = Normal::new(
negative_reports_mean + 2.0 * negative_reports_sd,
negative_reports_sd,
)
.unwrap();
let nr_pdf_blocked = nr_normal_blocked.pdf(negative_reports_today as f64);
(pdf / pdf_blocked).ln() < alpha || (nr_pdf / nr_pdf_blocked).ln() < alpha
}
/// Evaluate invite-only bridge with lv3+ users submitting positive reports
fn stage_three(
&self,
confidence: f64,
bridge_ips: &[u32],
bridge_ips_today: u32,
negative_reports: &[u32],
negative_reports_today: u32,
positive_reports: &[u32],
positive_reports_today: u32,
) -> bool {
assert!(bridge_ips.len() >= UNTRUSTED_INTERVAL as usize);
assert_eq!(bridge_ips.len(), negative_reports.len());
assert_eq!(bridge_ips.len(), positive_reports.len());
let alpha = 1.0 - confidence;
let (mean_vec, sd_vec, cov_mat) =
Self::stats(&[bridge_ips, negative_reports, positive_reports]);
let negative_reports_mean = mean_vec[1];
let bridge_ips_sd = sd_vec[0];
let negative_reports_sd = sd_vec[1];
let positive_reports_sd = sd_vec[2];
// Artificially create data for alternative hypothesis
let num_days = bridge_ips.len() as usize;
let mut bridge_ips_blocked = vec![0; num_days];
let mut negative_reports_blocked = vec![0; num_days];
let mut positive_reports_blocked = vec![0; num_days];
let bridge_ips_deviation = (2.0 * bridge_ips_sd).round() as u32;
let positive_reports_deviation = (2.0 * positive_reports_sd).round() as u32;
for i in 0..num_days {
// Suppose positive reports will go down by 2 SDs
positive_reports_blocked[i] = if positive_reports_deviation > positive_reports[i] {
0
} else {
positive_reports[i] - positive_reports_deviation
};
// Suppose bridge stats will go down by 2 SDs
bridge_ips_blocked[i] = if bridge_ips_deviation > bridge_ips[i] {
0
} else {
bridge_ips[i] - bridge_ips_deviation
};
// Suppose each user who would have submitted a positive report but
// didn't submits a negative report instead.
negative_reports_blocked[i] =
negative_reports[i] + positive_reports[i] - positive_reports_blocked[i];
}
let (mean_vec_blocked, _sd_vec_blocked, cov_mat_blocked) = Self::stats(&[
&bridge_ips_blocked,
&negative_reports_blocked,
&positive_reports_blocked,
]);
let mvn = MultivariateNormal::new(mean_vec, cov_mat).unwrap();
let pdf = mvn.pdf(&DVector::from_vec(vec![
bridge_ips_today as f64,
negative_reports_today as f64,
positive_reports_today as f64,
]));
let mvn_blocked = MultivariateNormal::new(mean_vec_blocked, cov_mat_blocked).unwrap();
let pdf_blocked = mvn_blocked.pdf(&DVector::from_vec(vec![
bridge_ips_today as f64,
negative_reports_today as f64,
positive_reports_today as f64,
]));
// Also model negative reports in isolation
let nr_normal = Normal::new(negative_reports_mean, negative_reports_sd).unwrap();
let nr_pdf = nr_normal.pdf(negative_reports_today as f64);
// Note we do NOT make this a function of positive signals
let nr_normal_blocked = Normal::new(
negative_reports_mean + 2.0 * negative_reports_sd,
negative_reports_sd,
)
.unwrap();
let nr_pdf_blocked = nr_normal_blocked.pdf(negative_reports_today as f64);
(pdf / pdf_blocked).ln() < alpha || (nr_pdf / nr_pdf_blocked).ln() < alpha
}
}