A basic encrypted bridge table

This commit is contained in:
Ian Goldberg 2021-04-27 13:00:18 -04:00
parent f067c8b79a
commit beed9d95b2
3 changed files with 159 additions and 0 deletions

View File

@ -14,6 +14,7 @@ serde = "1"
sha2 = "0.9"
lazy_static = "1"
hex_fmt = "0.3"
aes-gcm = "0.8"
[features]
default = ["u64_backend"]

View File

@ -0,0 +1,157 @@
/*! The encrypted table of bridges. The table consists of a number of
* buckets, each holding some number (currently up to 3) of bridges.
* Each bucket is individually encrypted with a bucket key. Users will
* have a credential containing a bucket (number, key) combination, and
* so will be able to read one of the buckets. Users will either
* download the whole encrypted bucket list or use PIR to download a
* piece of it, so that the bridge authority does not learn which bucket
* the user has access to. */
use aes_gcm::aead;
use aes_gcm::aead::{generic_array::GenericArray, Aead, NewAead};
use aes_gcm::Aes128Gcm;
use rand::RngCore;
use std::convert::TryInto;
/// Each bridge information line is serialized into this many bytes
pub const BRIDGE_BYTES: usize = 128;
/// The max number of bridges per bucket
pub const MAX_BRIDGES_PER_BUCKET: usize = 3;
/// The size of a plaintext bucket
pub const BUCKET_BYTES: usize = BRIDGE_BYTES * MAX_BRIDGES_PER_BUCKET;
/// The size of an encrypted bucket
pub const ENC_BUCKET_BYTES: usize = BUCKET_BYTES + 12 + 16;
/// A bridge information line
#[derive(Debug)]
pub struct BridgeLine {
/// IPv4 or IPv6 address
pub addr: [u8; 16],
/// port
pub port: u16,
/// other protocol information, including pluggable trasport, public
/// key, etc.
pub info: [u8; BRIDGE_BYTES - 18],
}
impl Default for BridgeLine {
/// An "empty" BridgeLine is represented by all zeros
fn default() -> Self {
Self {
addr: [0; 16],
port: 0,
info: [0; BRIDGE_BYTES - 18],
}
}
}
impl BridgeLine {
/// Encode a BridgeLine to a byte array
pub fn encode(&self) -> [u8; BRIDGE_BYTES] {
let mut res: [u8; BRIDGE_BYTES] = [0; BRIDGE_BYTES];
res[0..16].copy_from_slice(&self.addr);
res[16..18].copy_from_slice(&self.port.to_be_bytes());
res[18..].copy_from_slice(&self.info);
res
}
/// Decode a BridgeLine from a byte array
pub fn decode(data: &[u8; BRIDGE_BYTES]) -> Self {
let mut res: Self = Default::default();
res.addr.copy_from_slice(&data[0..16]);
res.port = u16::from_be_bytes(data[16..18].try_into().unwrap());
res.info.copy_from_slice(&data[18..]);
res
}
/// Encode a bucket to a byte array
pub fn bucket_encode(bucket: &[BridgeLine; MAX_BRIDGES_PER_BUCKET]) -> [u8; BUCKET_BYTES] {
let mut res: [u8; BUCKET_BYTES] = [0; BUCKET_BYTES];
let mut pos: usize = 0;
for bridge in bucket {
res[pos..pos + BRIDGE_BYTES].copy_from_slice(&bridge.encode());
pos += BRIDGE_BYTES;
}
res
}
/// Decode a bucket from a byte array
pub fn bucket_decode(data: &[u8; BUCKET_BYTES]) -> [BridgeLine; MAX_BRIDGES_PER_BUCKET] {
let mut pos: usize = 0;
let mut res: [BridgeLine; MAX_BRIDGES_PER_BUCKET] = Default::default();
for bridge in res.iter_mut().take(MAX_BRIDGES_PER_BUCKET) {
*bridge = BridgeLine::decode(data[pos..pos + BRIDGE_BYTES].try_into().unwrap());
pos += BRIDGE_BYTES;
}
res
}
}
/// A BridgeTable is the internal structure holding the buckets
/// containing the bridges, the keys used to encrypt the buckets, and
/// the encrypted buckets. The encrypted buckets will be exposed to the
/// users of the system, and each user credential will contain the
/// decryption key for one bucket.
#[derive(Debug, Default)]
pub struct BridgeTable {
keys: Vec<[u8; 16]>,
buckets: Vec<[BridgeLine; MAX_BRIDGES_PER_BUCKET]>,
encbuckets: Vec<[u8; ENC_BUCKET_BYTES]>,
}
// Invariant: the lengths of the keys and buckets vectors are the same.
// The encbuckets vector only gets updated when encrypt_table is called.
impl BridgeTable {
/// Append a new bucket to the bridge table
pub fn new_bucket(&mut self, bucket: [BridgeLine; MAX_BRIDGES_PER_BUCKET]) {
// Pick a random key to encrypt this bucket
let mut rng = rand::thread_rng();
let mut key: [u8; 16] = [0; 16];
rng.fill_bytes(&mut key);
self.keys.push(key);
self.buckets.push(bucket);
}
/// Create the vector of encrypted buckets from the keys and buckets
/// in the BridgeTable. All of the entries will be (randomly)
/// re-encrypted, so it will be hidden whether any individual bucket
/// has changed (except for entirely new buckets, of course).
pub fn encrypt_table(&mut self) {
let mut rng = rand::thread_rng();
self.encbuckets.clear();
for (key, bucket) in self.keys.iter().zip(self.buckets.iter()) {
let mut encbucket: [u8; ENC_BUCKET_BYTES] = [0; ENC_BUCKET_BYTES];
let plainbucket: [u8; BUCKET_BYTES] = BridgeLine::bucket_encode(bucket);
// Set the AES key
let aeskey = GenericArray::from_slice(key);
// Pick a random nonce
let mut noncebytes: [u8; 12] = [0; 12];
rng.fill_bytes(&mut noncebytes);
let nonce = GenericArray::from_slice(&noncebytes);
// Encrypt
let cipher = Aes128Gcm::new(aeskey);
let ciphertext: Vec<u8> = cipher.encrypt(&nonce, plainbucket.as_ref()).unwrap();
encbucket[0..12].copy_from_slice(&noncebytes);
encbucket[12..].copy_from_slice(ciphertext.as_slice());
self.encbuckets.push(encbucket);
}
}
/// Decrypt an individual encrypted bucket, given its key
pub fn decrypt_bucket(
key: &[u8; 16],
encbucket: &[u8; ENC_BUCKET_BYTES],
) -> Result<[BridgeLine; MAX_BRIDGES_PER_BUCKET], aead::Error> {
// Set the nonce and the key
let nonce = GenericArray::from_slice(&encbucket[0..12]);
let aeskey = GenericArray::from_slice(key);
// Decrypt
let cipher = Aes128Gcm::new(aeskey);
let plaintext: Vec<u8> = cipher.decrypt(&nonce, encbucket[12..].as_ref())?;
// Convert the plaintext bytes to an array of BridgeLines
Ok(BridgeLine::bucket_decode(
plaintext.as_slice().try_into().unwrap(),
))
}
}

View File

@ -17,6 +17,7 @@ The notation follows that of the paper "Hyphae: Social Secret Sharing"
#[macro_use]
extern crate zkp;
pub mod bridge_table;
pub mod dup_filter;
use sha2::Sha512;